
Tetrahedron Letters 51 (2010) 3205–3207
Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier .com/ locate/ tet le t
Staudinger and retro-Staudinger reactions. The dichloro-b-lactam moiety as
a useful handle for the synthesis of 4-aryl-2H-1,3-benzothiazine 1,1-dioxides

Lajos Fodor a,b,*, Péter Csomós a,b, Antal Csámpai c, Pál Sohár c,d,*

a Institute of Pharmaceutical Chemistry, University of Szeged, and Research Group of Stereochemistry of the Hungarian Academy of Sciences, H-6720, Szeged, Eötvös u. 6., Hungary
b Central Laboratory, County Hospital, H-5701 Gyula, POB 46, Hungary
c Institute of Chemistry, Eötvös Loránd University, Hungary
d Protein Modelling Research Group, Hungarian Academy of Sciences and Eötvös Loránd University, H-1518 Budapest, POB 32, Hungary

a r t i c l e i n f o a b s t r a c t
Article history:
Received 13 January 2010
Revised 22 March 2010
Accepted 12 April 2010
Available online 18 April 2010

Keywords:
1,3-Benzothiazine
Dichloro-b-lactam
Staudinger reaction
Oxidation
0040-4039/$ - see front matter � 2010 Elsevier Ltd. A
doi:10.1016/j.tetlet.2010.04.051

* Corresponding authors. Tel.: +36 66 463763; fax: +
1 3722911; fax: +36 1 3722592 (P.S.).

E-mail addresses: fodor@pandy.hu (L. Fodor), soha
The dichloro-b-lactam ring, obtained via Staudinger reaction of 4-aryl-2H-1,3-benzothiazines, proved to
be a useful protecting strategy for the synthesis of 4-aryl-2H-1,3-benzothiazine 1,1-dioxides. After oxida-
tion of the 1,1-dichloroazeto[2,1-c][1,3]-benzothiazin-2-ones, the thiazine ring could be recovered selec-
tively and in good yield by treatment with base. Thus, novel 4-aryl-2H-1,3-benzothiazine 1,1-dioxides
were obtained efficiently.

� 2010 Elsevier Ltd. All rights reserved.
Among condensed sulfur–nitrogen heterocycles, sulfones such
as 1,4-benzothiazepine 1,1-dioxides exhibit a broad range of bio-
logical activity (antiatherosclerotic,1 antihyperlipidaemic,2 muscle
relaxation accelerator3 and antiarrhythmic effects4). The six-mem-
bered homologues, 1,4-benzothiazine 1,1-dioxides, inhibit peptide
deformylase, for example,5 while 1,2-benzothiazine 1,1-dioxides
include ‘oxicam’ drugs such as meloxicam and piroxicam.6 In con-
trast, the 1,3-benzothiazine 1,1-dioxide ring system has been pre-
pared in a few cases through ring-enlargement reactions of
substituted saccharin derivatives.7 (It is noteworthy that this
method is only suitable for the synthesis of dihydro- or 4-oxo-
1,3-benzothiazine sulfones.) This stems from the synthetic difficul-
ties encountered during conventional procedures; the oxidation of
various 1,3-benzothiazines results in a ring-contraction reaction,
providing 1,2-benzoisothiazoles as products.8

As part of a programme aimed at investigations of different con-
densed S,N-heterocycles, including b-lactam-condensed deriva-
tives,9a we wanted to devise a procedure for the preparation of
potentially pharmacologically active 2H-1,3-benzothiazine sulf-
ones 6a–c (Scheme 1).

We previously studied the reactions of monochloro-, dichloro-
and aryl-substituted b-lactam-condensed benzothiazines. Under
basic conditions, several ring-enlargement reactions occurred. Thus,
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1,4-9b,c and 4,1-benzothiazepines,9d isoquinolines9e and thiazoles9e

were obtained. In the course of our present investigations, we pre-
pared angularly-condensed dichloro-b-lactams 3a–c by Staudinger
reaction10 of 4-aryl-benzothiazines 1a–c.11 Surprisingly, on treat-
ment with sodium methoxide in methanol at reflux, the latter b-lac-
tams did not display the expected reactivity (ring enlargement,9b–e

ester formation12 or chloro-methoxy exchange13). Instead, the start-
ing 1,3-benzothiazines 1a–c were recovered, almost quantitatively,
via retro-Staudinger reaction.14

This observation led us to examine the use of the dichloro-b-
lactam moiety as a protecting strategy for the synthesis of sulfones
6a–c, which we could not obtain earlier by the direct oxidation of
benzothiazines 1a–c. As an example, treatment of 6,7-dimethoxy-
1,3-benzothiazines 1a–c with peracetic acid furnished 1,2-benzo-
thiazoles 2a–c instead of the expected sulfone products 6a–c
(Scheme 1).8 For the oxidation of b-lactam-condensed 1,3-thia-
zines 3a–c, peroxyacetic acid proved to be a mild and efficient re-
agent, and azetothiazine sulfones 4a–c were obtained selectively in
good yields.15 In this oxidation reaction the dichloro-b-lactam moi-
ety protected the benzothiazine ring from undergoing ring-con-
traction. Treatment of 4a–c with a refluxing solution of sodium
methoxide provided the novel target sulfones 6a–c, most probably
via 5a–c as intermediates.14 The Staudinger reactions of 6a–c with
dichloroacetyl chloride in refluxing toluene afforded b-lactams
4a–c (Scheme 1).11

The structures of the new compounds were confirmed by IR and
NMR spectroscopy.11,14,15
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Scheme 1. Reagents and conditions: (i) Cl2CHCOCl, Et3N, toluene, reflux, 1 h; (ii) NaOMe, MeOH, reflux, 15 min; (iii) MeC(O)OOH, MeCOOH, rt, 1 d.
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The presence of a b-lactam ring was proved by the IR frequency
(1785–1808 cm�1) which is higher than expected16a for condensed
azetidinones, due to the electron-withdrawing effect of the neigh-
bouring CCl2 group.

The oxidation to sulfones (products 4 and 6) follows from the
appearance of a stretching IR band-pair due to the SO2 group at fre-
quencies in accord with literature data,16b and the significant shifts
in the 1H and 13C NMR spectra of the neighbouring methylene
group (by �20 and 27.5 ppm in the 13C NMR spectra of 4 and 6),
and of the H-6 proton (7.39–7.55 ppm) relative to the values mea-
sured for 3a,b (6.69 and 6.67 ppm). A similar shift was observed for
the C-5a resonance (from 122.8 ± 0.1 ppm to 131.4 ± 0.1 ppm). As a
consequence of the molecular symmetry, the CH2 resonances occur
as singlets in derivatives of type 6, and as two doublets for the
other compounds investigated.

The singlet due to the methylene protons was shifted downfield
in 4a–c relative to 3b,c (by 0.06 ppm) due to the �I effect of the
sulfone group in the para position, while products 6a–c exhibited
opposite shifts (by 0.20 ppm). This phenomenon can be explained
by the compensating (electron-releasing) effect of the nitrogen
atom (of electron-reservoir character) in the contiguous conju-
gated bond chain.

In summary, we have developed a new procedure for the prepa-
ration of 4-aryl-2H-1,3-benzothiazine 1,1-dioxides 6a–c. Stauding-
er reaction of the substrate 4-aryl-2H-1,3-benzothiazines 1a–c
results in efficient formation of the dichloro-b-lactam subunit which
can be removed on treatment with sodium methoxide in methanol
following oxidation. This appears to be the first report of a retro-
Staudinger reaction. To the best of our knowledge, no protecting
group is available for imines from which they can be subsequently
recovered.17 Further investigations are in progress to extend the
applicability of the dichloro-b-lactam moiety as a protecting group.
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